Quantifying the Uncertainty of Human Activity Recognition Using a Bayesian Machine Learning Method: A Prediction Study
Hiroshi Mamiya, Daniel Fuller
doi: https://doi.org/10.1101/2023.08.16.23294126
Hiroshi Mamiya
aDepartment of Community Health and Epidemiology, University of Saskatchewan, Rm 3247 - E wing - Health Sciences, 104 Clinic Place, Saskatoon, Saskatchewan, Canada S7N-2Z4
Daniel Fuller
aDepartment of Community Health and Epidemiology, University of Saskatchewan, Rm 3247 - E wing - Health Sciences, 104 Clinic Place, Saskatoon, Saskatchewan, Canada S7N-2Z4

Data Availability
The de-identified accelerometer data are available publicly at: https://doi.org/10.7910/DVN/LXVZRC.
Posted August 22, 2023.
Quantifying the Uncertainty of Human Activity Recognition Using a Bayesian Machine Learning Method: A Prediction Study
Hiroshi Mamiya, Daniel Fuller
medRxiv 2023.08.16.23294126; doi: https://doi.org/10.1101/2023.08.16.23294126
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)