Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

The use of a deep learning model in the histopathological diagnosis of actinic keratosis: A case control accuracy study

View ORCID ProfileJ. Balkenhol, View ORCID ProfileM. Schmidt, T. Schnauder, J. Langhorst, View ORCID ProfileJ. Le’Clerc Arrastia, View ORCID ProfileD. Otero Baguer, G. Gilbert, View ORCID ProfileL. Schmitz, View ORCID ProfileT. Dirschka
doi: https://doi.org/10.1101/2023.11.20.23298649
J. Balkenhol
1CentroDerm Clinic, Heinz-Fangman-Straße 57, Wuppertal, Germany
2Faculty of Health, University Witten-Herdecke, Alfred-Herrhausen-Straße 50, Witten, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Balkenhol
M. Schmidt
4Center for Industrial Mathematics, University of Bremen, Bibliothekstraße 5, Bremen, Germany
5aisencia, Konrad-Zuse-Str. 6A, Bremen, Germany
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Schmidt
T. Schnauder
4Center for Industrial Mathematics, University of Bremen, Bibliothekstraße 5, Bremen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Langhorst
4Center for Industrial Mathematics, University of Bremen, Bibliothekstraße 5, Bremen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Le’Clerc Arrastia
4Center for Industrial Mathematics, University of Bremen, Bibliothekstraße 5, Bremen, Germany
5aisencia, Konrad-Zuse-Str. 6A, Bremen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Le’Clerc Arrastia
D. Otero Baguer
4Center for Industrial Mathematics, University of Bremen, Bibliothekstraße 5, Bremen, Germany
5aisencia, Konrad-Zuse-Str. 6A, Bremen, Germany
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Otero Baguer
G. Gilbert
6Edinburgh Medical School, The University of Edinburgh, Edinburgh, EH16 4SB
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Schmitz
1CentroDerm Clinic, Heinz-Fangman-Straße 57, Wuppertal, Germany
3Department of Dermatology, Venereology, and Allergology, Ruhr-University, Bochum, Germany
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Schmitz
T. Dirschka
1CentroDerm Clinic, Heinz-Fangman-Straße 57, Wuppertal, Germany
2Faculty of Health, University Witten-Herdecke, Alfred-Herrhausen-Straße 50, Witten, Germany
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Dirschka
  • For correspondence: t.dirschka{at}centroderm.de
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Data Availability

Affiliates of the Centroderm Clinic1 have unlimited access to all clinical data used in this research work. Affiliates of the University of Bremen4 and aisencia5 have unlimited access to all technical data. Both affiliates share a pool of information for the collaboration. Clinical data of the included Actinic Keratoses are available in the published data set (Balkenhol, Julius; Schmidt, Maximillian; Schnauder, Tim; Langenhorst, Johannes; Le Clerc Arrastia, Jean; Otero Baguer, Daniel; Gilbert, Georgia; Schmitz, Lutz; Dirschka, Thomas (2023), Supplementary Data 1.0: The use of a deep learning model in the histopathological diagnosis of actinic keratosis: A case control accuracy study, Mendeley Data, V2, doi: 10.17632/2t5pg25vkh.2). Histopathological slides and annotations cannot be made publicly available. Access to view the slides and annotations can be given upon request to the authors.

https://data.mendeley.com/datasets/2t5pg25vkh/2

Back to top
PreviousNext
Posted November 20, 2023.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The use of a deep learning model in the histopathological diagnosis of actinic keratosis: A case control accuracy study
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The use of a deep learning model in the histopathological diagnosis of actinic keratosis: A case control accuracy study
J. Balkenhol, M. Schmidt, T. Schnauder, J. Langhorst, J. Le’Clerc Arrastia, D. Otero Baguer, G. Gilbert, L. Schmitz, T. Dirschka
medRxiv 2023.11.20.23298649; doi: https://doi.org/10.1101/2023.11.20.23298649
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
The use of a deep learning model in the histopathological diagnosis of actinic keratosis: A case control accuracy study
J. Balkenhol, M. Schmidt, T. Schnauder, J. Langhorst, J. Le’Clerc Arrastia, D. Otero Baguer, G. Gilbert, L. Schmitz, T. Dirschka
medRxiv 2023.11.20.23298649; doi: https://doi.org/10.1101/2023.11.20.23298649

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Dermatology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)