Metabolomics data improve 10-year cardiovascular risk prediction with the SCORE2 algorithm for the general population without cardiovascular disease or diabetes
View ORCID ProfileRuijie Xie, Sha Sha, View ORCID ProfileLei Peng, Bernd Holleczek, View ORCID ProfileHermann Brenner, View ORCID ProfileBen Schöttker
doi: https://doi.org/10.1101/2024.04.29.24306593
Ruijie Xie
aDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
bFaculty of Medicine, Heidelberg University, 69115 Heidelberg, Germany
Sha Sha
aDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
bFaculty of Medicine, Heidelberg University, 69115 Heidelberg, Germany
Lei Peng
aDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
bFaculty of Medicine, Heidelberg University, 69115 Heidelberg, Germany
Bernd Holleczek
cSaarland Cancer Registry, Neugeländstraße 9, 66117 Saarbrücken, Germany
Hermann Brenner
aDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
dNetwork Aging Research, Heidelberg University, Bergheimer Straße 20, 69115 Heidelberg, Germany
Ben Schöttker
aDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany

Data Availability
Data from ESTHER is available upon reasonable request that is compatible with participants informed consent. Data from the UK Biobank (https://www.ukbiobank.ac.uk/) is available to bona fide researchers on application.
Posted May 04, 2024.
Metabolomics data improve 10-year cardiovascular risk prediction with the SCORE2 algorithm for the general population without cardiovascular disease or diabetes
Ruijie Xie, Sha Sha, Lei Peng, Bernd Holleczek, Hermann Brenner, Ben Schöttker
medRxiv 2024.04.29.24306593; doi: https://doi.org/10.1101/2024.04.29.24306593
Metabolomics data improve 10-year cardiovascular risk prediction with the SCORE2 algorithm for the general population without cardiovascular disease or diabetes
Ruijie Xie, Sha Sha, Lei Peng, Bernd Holleczek, Hermann Brenner, Ben Schöttker
medRxiv 2024.04.29.24306593; doi: https://doi.org/10.1101/2024.04.29.24306593
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)