Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Non-Adherence Tree Analysis (NATA) - an adherence improvement framework: a COVID-19 case study

View ORCID ProfileErnest Edifor, Regina Brown, Paul Smith, Rick Kossik
doi: https://doi.org/10.1101/2020.06.30.20135343
Ernest Edifor
1Operations, Technology, Events and Hospitality Management, Manchester Metropolitan University, Manchester, Lancashire, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ernest Edifor
  • For correspondence: e.edifor{at}mmu.ac.uk
Regina Brown
2Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul Smith
3Marketing, Retail and Tourism, Manchester Metropolitan University, Manchester, Lancashire, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rick Kossik
4Research and Development, GoldSim Technology Group LLC, Seattle, Washington, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Poor adherence to medication is a global phenomenon that has received a significant amount of research attention yet remains largely unsolved. Medication non-adherence can blur drug efficacy results in clinical trials, lead to substantial financial losses, increase the risk of relapse and hospitalisation, or lead to death. The most common methods measuring adherence are post-treatment measures; that is, adherence is usually measured after the treatment has begun. What the authors are proposing in this multidisciplinary study is a technique for analysing the factors that can cause non-adherence before or during medication treatment.

Fault Tree Analysis (FTA), allows system analysts to determine how combinations of simple faults of a system can propagate to cause a total system failure. Monte Carlo simulation is a mathematical algorithm that depends heavily on repeated random sampling to predict the behaviour of a system. In this study, the authors propose the use of Non-Adherence Tree Analysis (NATA), based on the FTA and Monte Carlo simulation techniques, to improve adherence. Firstly, the non-adherence factors of a medication treatment lifecycle are translated into what is referred to as a Non-Adherence Tree (NAT). Secondly, the NAT is coded into a format that is translated into the GoldSim software for performing dynamic system modelling and analysis using Monte Carlo. Finally, the GoldSim model is simulated and analysed to predict the behaviour of the NAT.

This study produces a framework for improving adherence by analysing social and non-social adherence barriers. The results reveal that the biggest factor that could contribute to non-adherence to a COVID-19 treatment is a therapy-related factor (the side effects of the medication). This is closely followed by a condition-related factor (asymptomatic nature of the disease) then patient-related factors (forgetfulness and other causes). With this information, clinicians can implement relevant measures and allocate resources appropriately to minimise non-adherence.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

not applicable

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

NA

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data available on request

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted July 03, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Non-Adherence Tree Analysis (NATA) - an adherence improvement framework: a COVID-19 case study
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Non-Adherence Tree Analysis (NATA) - an adherence improvement framework: a COVID-19 case study
Ernest Edifor, Regina Brown, Paul Smith, Rick Kossik
medRxiv 2020.06.30.20135343; doi: https://doi.org/10.1101/2020.06.30.20135343
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Non-Adherence Tree Analysis (NATA) - an adherence improvement framework: a COVID-19 case study
Ernest Edifor, Regina Brown, Paul Smith, Rick Kossik
medRxiv 2020.06.30.20135343; doi: https://doi.org/10.1101/2020.06.30.20135343

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Public and Global Health
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)