Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Intelligent Pneumonia Identification from Chest X-Rays: A Systematic Literature Review

Wasif Khan, View ORCID ProfileNazar Zaki, Luqman Ali
doi: https://doi.org/10.1101/2020.07.09.20150342
Wasif Khan
1Department of Computer Science and Software Eng., College of Information Technology, UAEU, Al Ain 15551, UAE
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: nzaki{at}uaeu.ac.ae 201990025{at}uaeu.ac.ae
Nazar Zaki
1Department of Computer Science and Software Eng., College of Information Technology, UAEU, Al Ain 15551, UAE
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nazar Zaki
  • For correspondence: nzaki{at}uaeu.ac.ae 201990025{at}uaeu.ac.ae
Luqman Ali
1Department of Computer Science and Software Eng., College of Information Technology, UAEU, Al Ain 15551, UAE
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Chest radiography is an important diagnostic tool for chest-related diseases. Medical imaging research is currently embracing the automatic detection techniques used in computer vision. Over the past decade, Deep Learning techniques have shown an enormous breakthrough in the field of medical diagnostics. Various automated systems have been proposed for the rapid detection of pneumonia on chest x-rays images Although such detection algorithms are many and varied, they have not been summarized into a review that would assist practitioners in selecting the best methods from a real-time perspective, perceiving the available datasets, and understanding the currently achieved results in this domain. This paper overviews the current literature on pneumonia identification from chest x-ray images. After summarizing the topic, the review analyzes the usability, goodness factors, and computational complexities of the algorithms that implement these techniques. It also discusses the quality, usability, and size of the available datasets, and ways of coping with unbalanced datasets.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work is financially supported by College of Information Technology, United Arab Emirates University.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Not applicable

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The data that support the findings of this study are available on request from the corresponding authors.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted July 11, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Intelligent Pneumonia Identification from Chest X-Rays: A Systematic Literature Review
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Intelligent Pneumonia Identification from Chest X-Rays: A Systematic Literature Review
Wasif Khan, Nazar Zaki, Luqman Ali
medRxiv 2020.07.09.20150342; doi: https://doi.org/10.1101/2020.07.09.20150342
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Intelligent Pneumonia Identification from Chest X-Rays: A Systematic Literature Review
Wasif Khan, Nazar Zaki, Luqman Ali
medRxiv 2020.07.09.20150342; doi: https://doi.org/10.1101/2020.07.09.20150342

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Radiology and Imaging
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)