Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

An exact method for quantifying the reliability of end-of-epidemic declarations in real time

View ORCID ProfileKris V Parag, View ORCID ProfileChristl A Donnelly, Rahul Jha, Robin N Thompson
doi: https://doi.org/10.1101/2020.07.13.20152082
Kris V Parag
1MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, W2 1PG, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kris V Parag
  • For correspondence: k.parag{at}imperial.ac.uk
Christl A Donnelly
1MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, W2 1PG, UK
2Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christl A Donnelly
Rahul Jha
3Department of Applied Math and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robin N Thompson
4Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

We derive and validate a novel and analytic method for estimating the probability that an epidemic has been eliminated (i.e. that no future local cases will emerge) in real time. When this probability crosses 0.95 an outbreak can be declared over with 95% confidence. Our method is easy to compute, only requires knowledge of the incidence curve and the serial interval distribution, and evaluates the statistical lifetime of the outbreak of interest. Using this approach, we rigorously show how the time-varying under-reporting of infected cases will artificially inflate the inferred probability of elimination, leading to premature (false-positive) end-of-epidemic declarations. Contrastingly, we prove that incorrectly identifying imported cases as local will deceptively decrease this probability, resulting in delayed (false-negative) declarations. Failing to sustain intensive surveillance during the later phases of an epidemic can therefore substantially mislead policymakers on when it is safe to remove travel bans or relax quarantine and social distancing advisories. World Health Organisation guidelines recommend fixed (though disease-specific) waiting times for end-of-epidemic declarations that cannot accommodate these variations. Consequently, there is an unequivocal need for more active and specialised metrics for reliably identifying the conclusion of an epidemic.

Author Summary Deciding on when to declare an infectious disease epidemic over is an important and non-trivial problem. Early declarations can mean that interventions such as lockdowns, social distancing advisories and travel bans are relaxed prematurely, elevating the risk of additional waves of the disease. Late declarations can unnecessarily delay the re-opening of key economic sectors, for example trade, tourism and agriculture, potentially resulting in significant financial and livelihood losses. Here we develop and test a novel and exact data-driven method for optimising the timing of end-of-epidemic declarations. Our approach converts observations of infected cases up to any given time into a prediction of the likelihood that the epidemic is over at that time. Using this method, we quantify the reliability of end-of-epidemic declarations in real time, under ideal case surveillance, showing that it can depend strongly on past infection numbers. We then prove that failing to compensate for practical issues such as the time-varying under-reporting and importing of cases necessarily results in premature and delayed declarations, respectively. These variations and biases cannot be accommodated by current worldwide declaration guidelines. Sustained and intensive surveillance coupled with more adaptive declaration metrics are vital if informed end-of-epidemic declarations are to be made.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

KVP and CAD acknowledge joint centre funding from the UK Medical Research Council and Department for International Development under grant reference MR/R015600/1. RNT thanks Christ Church (Oxford) for funding via a Junior Research Fellowship. CAD thanks the UK National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Modelling Methodology at Imperial College London in partnership with Public Health England (PHE) for funding (grant HPRU/2012/10080). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

N/A

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data and code are freely available at https://github.com/kpzoo/End-of-epidemic-declarations

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted October 10, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
An exact method for quantifying the reliability of end-of-epidemic declarations in real time
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
An exact method for quantifying the reliability of end-of-epidemic declarations in real time
Kris V Parag, Christl A Donnelly, Rahul Jha, Robin N Thompson
medRxiv 2020.07.13.20152082; doi: https://doi.org/10.1101/2020.07.13.20152082
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
An exact method for quantifying the reliability of end-of-epidemic declarations in real time
Kris V Parag, Christl A Donnelly, Rahul Jha, Robin N Thompson
medRxiv 2020.07.13.20152082; doi: https://doi.org/10.1101/2020.07.13.20152082

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)