A multi-task convolutional deep learning method for HLA allelic imputation and its application to trans-ethnic MHC fine-mapping of type 1 diabetes
View ORCID ProfileTatsuhiko Naito, Ken Suzuki, Jun Hirata, Yoichiro Kamatani, View ORCID ProfileKoichi Matsuda, Tatsushi Toda, View ORCID ProfileYukinori Okada
doi: https://doi.org/10.1101/2020.08.10.20170522
Tatsuhiko Naito
1Department of Statistical Genetics, Osaka University Graduate School of Medicine, 565-0871, Suita, Japan
2Department of Neurology, Graduate School of Medicine, The University of Tokyo, 113-8655, Tokyo, Japan
Ken Suzuki
1Department of Statistical Genetics, Osaka University Graduate School of Medicine, 565-0871, Suita, Japan
Jun Hirata
1Department of Statistical Genetics, Osaka University Graduate School of Medicine, 565-0871, Suita, Japan
3Pharmaceutical Discovery Research Laboratories, Teijin Pharma Limited, 191-8512, Hino, Japan
Yoichiro Kamatani
4Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 108-8639, Tokyo, Japan
Koichi Matsuda
5Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 108-8639, Tokyo, Japan
Tatsushi Toda
2Department of Neurology, Graduate School of Medicine, The University of Tokyo, 113-8655, Tokyo, Japan
Yukinori Okada
1Department of Statistical Genetics, Osaka University Graduate School of Medicine, 565-0871, Suita, Japan
6Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, 565-0871, Suita, Japan
7Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 565-0871, Suita, Japan

Article usage
Posted January 10, 2021.
A multi-task convolutional deep learning method for HLA allelic imputation and its application to trans-ethnic MHC fine-mapping of type 1 diabetes
Tatsuhiko Naito, Ken Suzuki, Jun Hirata, Yoichiro Kamatani, Koichi Matsuda, Tatsushi Toda, Yukinori Okada
medRxiv 2020.08.10.20170522; doi: https://doi.org/10.1101/2020.08.10.20170522
A multi-task convolutional deep learning method for HLA allelic imputation and its application to trans-ethnic MHC fine-mapping of type 1 diabetes
Tatsuhiko Naito, Ken Suzuki, Jun Hirata, Yoichiro Kamatani, Koichi Matsuda, Tatsushi Toda, Yukinori Okada
medRxiv 2020.08.10.20170522; doi: https://doi.org/10.1101/2020.08.10.20170522
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)