Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

An Inexpensive Smartphone-Based Device and Predictive Models for Rapid, Non-Invasive, and Point-of-Care Monitoring of Ocular and Cardiovascular Complications Related to Diabetes

Kasyap Chakravadhanula
doi: https://doi.org/10.1101/2020.10.24.20218933
Kasyap Chakravadhanula
1BASIS Scottsdale, 10400 N 128th St, Scottsdale, AZ 85259
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: kasychakra{at}gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Diabetes is a massive global problem, with growth especially rapid in developing regions, which can lead to several damaging complications. Among the most impactful of these are diabetic retinopathy, the leading cause of blindness among working class adults, and cardiovascular disease, the leading cause of death worldwide. However, diagnosis is often too late to prevent irreversible damage caused by these linked conditions. This study describes the development of an integrated test, automated and not requiring laboratory blood analysis, for screening of these conditions. First, a random forest model was developed by retrospectively analyzing the influence of various risk factors (obtained quickly and non-invasively) on cardiovascular risk. Next, a deep-learning model was developed for prediction of diabetic retinopathy from retinal fundus images by a modified and re-trained InceptionV3 image classification model. The input was simplified by automatically segmenting the blood vessels in the retinal image. The technique of transfer learning enables the model to capitalize on existing infrastructure on the target device, meaning more versatile deployment, especially helpful in low-resource settings. The models were integrated into a smartphone-based device, combined with an inexpensive 3D-printed retinal imaging attachment. Accuracy scores, as well as the receiver operating characteristic curve, the learning curve, and other gauges, were promising. This test is much cheaper and faster, enabling continuous monitoring for two damaging complications of diabetes. It has the potential to replace the manual methods of diagnosing both diabetic retinopathy and cardiovascular risk, which are time consuming and costly processes only done by medical professionals away from the point of care, and to prevent irreversible blindness and heart-related complications through faster, cheaper, and safer monitoring of diabetic complications. As well, tracking of cardiovascular and ocular complications of diabetes can enable improved detection of other diabetic complications, leading to earlier and more efficient treatment on a global scale.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No external funding was received for this work.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The BASIS Scottsdale IRB approved this study, however this study deals entirely with computational analysis of public datasets and device design.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data used in this study is publicly available and referenced in the manuscript. Below are the Data Sources: Janosi, Andreas & Steinbrunn, William & Pfisterer, Mathias & Detrano, Robert. Heart Disease Dataset. UCI. archive.ics.uci.edu/ml/datasets/heart+Disease Kaggle Diabetic Retinopathy Detection competition. https://www.kaggle.com/c/diabetic-retinopathy-detection. Accessed November, 2018. J.J. Staal, M.D. Abramoff, M. Niemeijer, M.A. Viergever, B. van Ginneken, "Ridge based vessel segmentation in color images of the retina", IEEE Transactions on Medical Imaging, 2004, vol. 23, pp. 501-509. A. Hoover, V. Kouznetsova and M. Goldbaum, "Locating Blood Vessels in Retinal Images by Piece-wise Threhsold Probing of a Matched Filter Response", IEEE Transactions on Medical Imaging, vol. 19 no. 3, pp. 203-210, March 2000. Jan Odstrcilik, Jiri Jan, Radim Kolar, and Jiri Gazarek. Improvement of vessel segmentation by matched filtering in colour retinal images. In IFMBE Proceedings of World Congress on Medical Physics and Biomedical Engineering, pages 327 - 330, 2009.

https://www.archive.ics.uci.edu/ml/datasets/heart+Disease

https://www.kaggle.com/c/diabetic-retinopathy-detection

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted October 27, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
An Inexpensive Smartphone-Based Device and Predictive Models for Rapid, Non-Invasive, and Point-of-Care Monitoring of Ocular and Cardiovascular Complications Related to Diabetes
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
An Inexpensive Smartphone-Based Device and Predictive Models for Rapid, Non-Invasive, and Point-of-Care Monitoring of Ocular and Cardiovascular Complications Related to Diabetes
Kasyap Chakravadhanula
medRxiv 2020.10.24.20218933; doi: https://doi.org/10.1101/2020.10.24.20218933
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
An Inexpensive Smartphone-Based Device and Predictive Models for Rapid, Non-Invasive, and Point-of-Care Monitoring of Ocular and Cardiovascular Complications Related to Diabetes
Kasyap Chakravadhanula
medRxiv 2020.10.24.20218933; doi: https://doi.org/10.1101/2020.10.24.20218933

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Endocrinology (including Diabetes Mellitus and Metabolic Disease)
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)