Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

A stochastic epidemiological model to estimate the size of an outbreak at the first case identification

View ORCID ProfilePeter Czuppon, François Blanquart, View ORCID ProfileFlorence Débarre
doi: https://doi.org/10.1101/2020.11.17.20233403
Peter Czuppon
1Institute of Ecology and Environmental Sciences of Paris (iEES-Paris, UMR 7618), Sorbonne Université, CNRS, UPEC, IRD, INRAE, 75252 Paris, France
2Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, 75005 Paris, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Peter Czuppon
  • For correspondence: peter.czuppon{at}upmc.fr
François Blanquart
2Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, 75005 Paris, France
3Université de Paris, INSERM, IAME, F-75018 Paris
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Florence Débarre
1Institute of Ecology and Environmental Sciences of Paris (iEES-Paris, UMR 7618), Sorbonne Université, CNRS, UPEC, IRD, INRAE, 75252 Paris, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Florence Débarre
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/2020.11.17.20233403
History 
  • November 18, 2020.

Article Versions

  • You are currently viewing Version 1 of this article (November 18, 2020 - 11:02).
  • Version 2 (June 7, 2021 - 09:13).
  • View Version 3, the most recent version of this article.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

Author Information

  1. Peter Czuppon1,2,#,
  2. François Blanquart2,3,* and
  3. Florence Débarre1,*
  1. 1Institute of Ecology and Environmental Sciences of Paris (iEES-Paris, UMR 7618), Sorbonne Université, CNRS, UPEC, IRD, INRAE, 75252 Paris, France
  2. 2Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, 75005 Paris, France
  3. 3Université de Paris, INSERM, IAME, F-75018 Paris
  1. ↵# Corresponding author; email: peter.czuppon{at}upmc.fr
  1. ↵* equal contributions

Back to top
PreviousNext
Posted November 18, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A stochastic epidemiological model to estimate the size of an outbreak at the first case identification
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A stochastic epidemiological model to estimate the size of an outbreak at the first case identification
Peter Czuppon, François Blanquart, Florence Débarre
medRxiv 2020.11.17.20233403; doi: https://doi.org/10.1101/2020.11.17.20233403
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A stochastic epidemiological model to estimate the size of an outbreak at the first case identification
Peter Czuppon, François Blanquart, Florence Débarre
medRxiv 2020.11.17.20233403; doi: https://doi.org/10.1101/2020.11.17.20233403

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)