Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

COVID-19 Fatality Rate Classification using Synthetic Minority Oversampling Technique (SMOTE) for Imbalance Class

Timothy Oladunni, Justin Stephan, Lala Aicha Coulibaly
doi: https://doi.org/10.1101/2021.05.20.21257539
Timothy Oladunni
Department of Computer Science and Information Technology University of the District of Columbia, Washington DC, 20008
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: timothy.oladunni{at}udc.edu
Justin Stephan
Department of Computer Science and Information Technology University of the District of Columbia, Washington DC, 20008
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lala Aicha Coulibaly
Department of Computer Science and Information Technology University of the District of Columbia, Washington DC, 20008
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

SARS-Cov-2 is not to be introduced anymore. The global pandemic that originated more than a year ago in Wuhan, China has claimed thousands of lives. Since the arrival of this plague, face mask has become part of our dressing code. The focus of this study is to design, develop and evaluate a COVID-19 fatality rate classifier at the county level. The proposed model predicts fatality rate as low, moderate, or high. This will help government and decision makers to improve mitigation strategy and provide measures to reduce the spread of the disease. Tourists and travelers will also find the work useful in planning of trips. Dataset used in the experiment contained imbalanced fatality levels. Therefore, class imbalance was offset using SMOTE. Evaluation of the proposed model was based on precision, F1 score, accuracy, and ROC curve. Five learning algorithms were trained and evaluated. Experimental results showed the Bagging model has the best performance.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

National Science Foundation

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

University of the District of Columbia IRB

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • Timothy.oladunni{at}udc.edu, justin.stephan{at}udc.edu, lalaaicha.coulibaly{at}udc.edu,

Data Availability

Data was obtained from JHU COVID-19 repository

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted May 24, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
COVID-19 Fatality Rate Classification using Synthetic Minority Oversampling Technique (SMOTE) for Imbalance Class
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
COVID-19 Fatality Rate Classification using Synthetic Minority Oversampling Technique (SMOTE) for Imbalance Class
Timothy Oladunni, Justin Stephan, Lala Aicha Coulibaly
medRxiv 2021.05.20.21257539; doi: https://doi.org/10.1101/2021.05.20.21257539
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
COVID-19 Fatality Rate Classification using Synthetic Minority Oversampling Technique (SMOTE) for Imbalance Class
Timothy Oladunni, Justin Stephan, Lala Aicha Coulibaly
medRxiv 2021.05.20.21257539; doi: https://doi.org/10.1101/2021.05.20.21257539

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)