Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Over- and under-estimation of vaccine effectiveness

View ORCID ProfileHilla De-Leon, View ORCID ProfileDvir Aran
doi: https://doi.org/10.1101/2022.01.24.22269737
Hilla De-Leon
1Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hilla De-Leon
Dvir Aran
1Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
2The Taub Faculty of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dvir Aran
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Background The effectiveness of SARS-CoV-2 vaccines has been a subject of debate, with varying results reported in different studies, ranging from 60-95% vaccine effectiveness (VE). This range is striking when comparing two studies conducted in Israel at the same time, as one study reported VE of 90-95%, while the other study reported only ~80%. We argue that this variability is due to inadequate accounting for indirect protection provided by vaccines, which can block further transmission of the virus

Materials and Methods We developed a novel analytic heterogenous infection model and extended our agent-based model of disease spread to allow for heterogenous interactions between vaccinated and unvaccinated across close-contacts and regions. We applied these models on real-world regional data from Israel from early 2021 to estimate VE using two common study designs: population-based and secondary infections

Results Our results show that the estimated VE of a vaccine with efficacy of 85% can range from 70-95% depending on the interactions between vaccinated and unvaccinated individuals. Since different study designs capture different levels of interactions, we suggest that this interference explains the variability across studies. Finally, we propose a methodology for more accurate estimation without knowledge of interactions

Discussions and Conclusions Our study highlights the importance of considering indirect protection when estimating vaccine effectiveness, explains how different study designs may report biased estimations, and propose a method to overcome this bias. We hope that our models will lead to more accurate understanding of the impact of vaccinations and inform public health policy.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • ↵* E-mail: hdeleon{at}campus.technion.ac.il

  • ↵† E-mail: dviraran{at}technion.ac.il

  • All the paper was revised

Data Availability

All data are available online

https://www.cbs.gov.il/EN/Pages/default.aspx

https://data.gov.il/dataset/covid-19.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted February 06, 2023.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Over- and under-estimation of vaccine effectiveness
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Over- and under-estimation of vaccine effectiveness
Hilla De-Leon, Dvir Aran
medRxiv 2022.01.24.22269737; doi: https://doi.org/10.1101/2022.01.24.22269737
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Over- and under-estimation of vaccine effectiveness
Hilla De-Leon, Dvir Aran
medRxiv 2022.01.24.22269737; doi: https://doi.org/10.1101/2022.01.24.22269737

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Endocrinology (including Diabetes Mellitus and Metabolic Disease)
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)