Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Silence is golden, by my measures still see: why cheap-but-noisy outcome measures can be more cost effective than gold standards

View ORCID ProfileBenjamin Woolf, Hugo Pedder, Henry Rodriguez-Broadbent, Phil Edwards
doi: https://doi.org/10.1101/2022.05.17.22274839
Benjamin Woolf
1Department of Psychological Science, University of Bristol, Bristol, UK
2Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
3Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Benjamin Woolf
  • For correspondence: benjamin.woolf{at}bristol.ac.uk
Hugo Pedder
4Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Henry Rodriguez-Broadbent
5Department of Mathematics, Imperial College London, London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Phil Edwards
3Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Objective To assess the cost-effectiveness of using cheap-but-noisy outcome measures, such as a short and simple questionnaire.

Background To detect associations reliably, studies must avoid bias and random error. To reduce random error, we can increase the size of the study and increase the accuracy of the outcome measurement process. However, with fixed resources there is a trade-off between the number of participants a study can enrol and the amount of information that can be collected on each participant during data collection.

Method To consider the effect on measurement error of using outcome scales with varying numbers of categories we define and calculate the Variance from Categorisation that would be expected from using a category midpoint; define the analytic conditions under-which such a measure is cost-effective; use meta-regression to estimate the impact of participant burden, defined as questionnaire length, on response rates; and develop an interactive web-app to allow researchers to explore the cost-effectiveness of using such a measure under plausible assumptions.

Results Compared with no measurement, only having a few categories greatly reduced the Variance from Categorization. For example, scales with five categories reduce the variance by 96% for a uniform distribution. We additionally show that a simple measure will be more cost effective than a gold-standard measure if the relative increase in variance due to using it is less than the relative increase in cost from the gold standard, assuming it does not introduce bias in the measurement. We found an inverse power law relationship between participant burden and response rates such that a doubling the burden on participants reduces the response rate by around one third. Finally, we created an interactive web-app (https://benjiwoolf.shinyapps.io/cheapbutnoisymeasures/) to allow exploration of when using a cheap-but-noisy measure will be more cost-effective using realistic parameter.

Conclusion Cheap-but-noisy questionnaires containing just a few questions can be a cost effect way of maximising power. However, their use requires a judgment on the trade-off between the potential increase in risk information bias and the reduction in the potential of selection bias due to the expected higher response rates.

Key Messages

  • - A cheap-but-noisy outcome measure, like a short form questionnaire, is a more cost-effective method of maximising power than an error free gold standard when the percentage increase in noise from using the cheap-but-noisy measure is less than the relative difference in the cost of administering the two alternatives.

  • - We have created an R-shiny app to facilitate the exploration of when this condition is met at https://benjiwoolf.shinyapps.io/cheapbutnoisymeasures/

  • - Cheap-but-noisy outcome measures are more likely to introduce information bias than a gold standard, but may reduce selection bias because they reduce loss-to-follow-up. Researchers therefore need to form a judgement about the relative increase or decrease in bias before using a cheap-but-noisy measure.

  • - We would encourage the development and validation of short form questionnaires to enable the use of high quality cheap-but-noisy outcome measures in randomised controlled trials.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

Benjamin Woolf is funded by an Economic and Social Research Council (ESRC) South West Doctoral Training Partnership (SWDTP) 1+3 PhD Studentship Award (ES/P000630/1).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • Named Contact and Address: Benjamin Woolf; University of Bristol, Department of Psychological Science, 12a Priory Road, Bristol, BS8 1TU; Benjamin.woolf{at}bristol.ac.uk

Data Availability

All data produced in the present work are contained in the manuscript

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted May 20, 2022.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Silence is golden, by my measures still see: why cheap-but-noisy outcome measures can be more cost effective than gold standards
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Silence is golden, by my measures still see: why cheap-but-noisy outcome measures can be more cost effective than gold standards
Benjamin Woolf, Hugo Pedder, Henry Rodriguez-Broadbent, Phil Edwards
medRxiv 2022.05.17.22274839; doi: https://doi.org/10.1101/2022.05.17.22274839
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Silence is golden, by my measures still see: why cheap-but-noisy outcome measures can be more cost effective than gold standards
Benjamin Woolf, Hugo Pedder, Henry Rodriguez-Broadbent, Phil Edwards
medRxiv 2022.05.17.22274839; doi: https://doi.org/10.1101/2022.05.17.22274839

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)