Data integration between clinical research and patient care: a framework for context-depending data sharing and in silico predictions
View ORCID ProfileKatja Hoffmann, Anne Pelz, Elena Karg, Andrea Gottschalk, View ORCID ProfileThomas Zerjatke, Silvio Schuster, Heiko Böhme, Ingmar Glauche, Ingo Roeder
doi: https://doi.org/10.1101/2022.10.10.22280912
Katja Hoffmann
1Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
2National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
Anne Pelz
1Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
Elena Karg
1Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
Andrea Gottschalk
1Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
Thomas Zerjatke
1Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
Silvio Schuster
1Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
Heiko Böhme
2National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
Ingmar Glauche
1Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
Ingo Roeder
1Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
2National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany

Data Availability
Not applicable. Although the shown clinical data is structurally identical to data from clinical trials, we linked different sets of clinical data to artificially created personal data. The created set of artificial patient data are used to illustrate the framework functionality only.
Posted October 13, 2022.
Data integration between clinical research and patient care: a framework for context-depending data sharing and in silico predictions
Katja Hoffmann, Anne Pelz, Elena Karg, Andrea Gottschalk, Thomas Zerjatke, Silvio Schuster, Heiko Böhme, Ingmar Glauche, Ingo Roeder
medRxiv 2022.10.10.22280912; doi: https://doi.org/10.1101/2022.10.10.22280912
Data integration between clinical research and patient care: a framework for context-depending data sharing and in silico predictions
Katja Hoffmann, Anne Pelz, Elena Karg, Andrea Gottschalk, Thomas Zerjatke, Silvio Schuster, Heiko Böhme, Ingmar Glauche, Ingo Roeder
medRxiv 2022.10.10.22280912; doi: https://doi.org/10.1101/2022.10.10.22280912
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)