Abstract
Background Photodynamic therapy (PDT) is an effective antimicrobial therapy that we used to treat human abscess cavities in a recently completed Phase 1 clinical trial. This trial included pre-PDT measurements of abscess optical properties, which affect the expected light dose to the abscess wall and eventual PDT response.
Purpose The objective of this study was to simulate PDT treatment planning for the 13 subjects that received optical spectroscopy prior to clinical abscess PDT. Our goal was to determine the impact of these measured optical properties on our ability to achieve fluence rate targets in 95% of the abscess wall.
Methods During a Phase 1 clinical trial, 13 subjects received diffuse reflectance spectroscopy prior to PDT in order to determine the optical properties of their abscess wall. Retrospective treatment plans seeking to achieve fluence rate targets in 95% of the abscess wall were evaluated for all subjects for 3 conditions: (1) at the laser power delivered clinically with assumed optical properties, (2) at the laser power delivered clinically with measured optical properties, and (3) with patient-specific treatment planning using these measured optical properties. Factors modified in treatment planning included delivered laser power and intra-cavity Intralipid (scatterer) concentration. The effects of laser fiber type were also simulated.
Results Using a flat-cleaved laser fiber, the proportion of subjects that achieved 95% abscess wall coverage decreased significantly when incorporating measured optical properties for both the 4 mW/cm2 (92% vs. 38%, p=0.01) and 20 mW/cm2 (62% vs. 15%, p=0.04) fluence rate thresholds. However, when measured optical properties were incorporated into treatment planning, a fluence rate of 4 mW/cm2 was achieved in 95% of the abscess wall for all cases. In treatment planning, the optimal Intralipid concentration across subjects was found to be 0.14 ± 0.09% and the optimal laser power varied from that delivered clinically but with no clear trend (p=0.79). The required laser power to achieve 4 mW/cm2 in 95% of the abscess wall was significantly correlated with measured µa at the abscess wall (ρ=0.7, p=0.008), but not abscess surface area (ρ=0.2, p=0.53). When using spherical diffuser fibers as the illumination source, the optimal intralipid concentration decreased to 0.028 ± 0.026% (p=0.0005), and the required laser power decreased also (p=0.0002), compared to flat cleaved fibers. If the intra-cavity lipid emulsion (Intralipid) was replaced with a non-scattering fluid, all subjects could achieve the 4 mW/cm2 fluence rate threshold in 95% of the abscess wall using a spherical diffuser, while only 69% of subjects could reach the same criterion using a flat cleaved fiber.
Conclusions The range of optical properties measured in human abscesses reduced coverage of the abscess wall at desirable fluence rates. Patient-specific treatment planning including these measured optical properties could bring the coverage back to desirable levels by altering the Intralipid concentration and delivered optical power. These results motivate a future Phase 2 clinical trial to directly compare the efficacy of patient-specific-treatment planning with fixed doses of Intralipid and light.
Clinical Trial Registration The parent clinical trial from which these data were acquired is registered on ClinicalTrials.gov as “Safety and Feasibility Study of Methylene Blue Photodynamic Therapy to Sterilize Deep Tissue Abscess Cavities,” with ClinicalTrials.gov identifier NCT02240498.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
NCT02240498
Funding Statement
This study was funded by grant EB029921 from the National Institutes of Health
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The IRB of the University of Rochester gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Expanded Results and Discussion sections; Updated figures for clarity; Typo fixes and minor wording changes
Data Availability
All data produced in the present study are available upon reasonable request to the authors