Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Development and Evaluation of a Digital Scribe: Conversation Summarization Pipeline for Emergency Department Counseling Sessions towards Reducing Documentation Burden

View ORCID ProfileEmre Sezgin, Joseph Sirrianni, Kelly Kranz
doi: https://doi.org/10.1101/2023.12.06.23299573
Emre Sezgin
1Nationwide Children’s Hospital, Columbus OH
2Ohio State University College of Medicine, Columbus OH
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Emre Sezgin
  • For correspondence: emre.sezgin{at}nationwidechildrens.org
Joseph Sirrianni
1Nationwide Children’s Hospital, Columbus OH
PHD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kelly Kranz
1Nationwide Children’s Hospital, Columbus OH
RN
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Objective We present a proof-of-concept digital scribe system as an ED clinical conversation summarization pipeline and report its performance.

Materials and Methods We use four pre-trained large language models to establish the digital scribe system: T5-small, T5-base, PEGASUS-PubMed, and BART-Large-CNN via zero-shot and fine-tuning approaches. Our dataset includes 100 referral conversations among ED clinicians and medical records. We report the ROUGE-1, ROUGE-2, and ROUGE-L to compare model performance. In addition, we annotated transcriptions to assess the quality of generated summaries.

Results The fine-tuned BART-Large-CNN model demonstrates greater performance in summarization tasks with the highest ROUGE scores (F1ROUGE-1=0.49, F1ROUGE-2=0.23, F1ROUGE-L=0.35) scores. In contrast, PEGASUS-PubMed lags notably (F1ROUGE-1=0.28, F1ROUGE-2=0.11, F1ROUGE-L=0.22). BART-Large-CNN’s performance decreases by more than 50% with the zero-shot approach. Annotations show that BART-Large-CNN performs 71.4% recall in identifying key information and a 67.7% accuracy rate.

Discussion The BART-Large-CNN model demonstrates a high level of understanding of clinical dialogue structure, indicated by its performance with and without fine-tuning. Despite some instances of high recall, there is variability in the model’s performance, particularly in achieving consistent correctness, suggesting room for refinement. The model’s recall ability varies across different information categories.

Conclusion The study provides evidence towards the potential of AI-assisted tools in reducing clinical documentation burden. Future work is suggested on expanding the research scope with larger language models, and comparative analysis to measure documentation efforts and time.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The project described was supported by Award Number UM1TR004548 from the National Center for Advancing Translational Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Advancing Translational Sciences or the National Institutes of Health.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Study is approved by NCH ethical board (#00002897)

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

All data produced in the present study are available upon ethical board approval and subject to institutional data use agreement.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted December 07, 2023.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Development and Evaluation of a Digital Scribe: Conversation Summarization Pipeline for Emergency Department Counseling Sessions towards Reducing Documentation Burden
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Development and Evaluation of a Digital Scribe: Conversation Summarization Pipeline for Emergency Department Counseling Sessions towards Reducing Documentation Burden
Emre Sezgin, Joseph Sirrianni, Kelly Kranz
medRxiv 2023.12.06.23299573; doi: https://doi.org/10.1101/2023.12.06.23299573
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Development and Evaluation of a Digital Scribe: Conversation Summarization Pipeline for Emergency Department Counseling Sessions towards Reducing Documentation Burden
Emre Sezgin, Joseph Sirrianni, Kelly Kranz
medRxiv 2023.12.06.23299573; doi: https://doi.org/10.1101/2023.12.06.23299573

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Emergency Medicine
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)