Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Machine Learning in Acute Stroke Care: A Novel Model for Assessing the Need for Enteral Nutrition

View ORCID ProfileKazuhiro Okamoto, View ORCID ProfileKeisuke Irie, Kengo Hoyano, Isao Matsushita
doi: https://doi.org/10.1101/2024.03.11.24304069
Kazuhiro Okamoto
1Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, Fukui, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kazuhiro Okamoto
  • For correspondence: kokamoto{at}fukui-hsu.ac.jp
Keisuke Irie
2Cognitive Motor Neuroscience, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Keisuke Irie
Kengo Hoyano
1Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, Fukui, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Isao Matsushita
3Department of Rehabilitation Medicine, Kanazawa Medical University, Ishikawa, Japan, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Aim Early enteral nutrition is often recommended for patients with acute stroke who have difficulty with oral intake. This study aimed to develop a predictive model to assess the need for enteral nutrition in older patients with acute cerebrovascular disorders. The model employs a machine learning algorithm using observational parameters related to swallowing ability.

Methods Ninety patients experiencing a cerebrovascular accident for the first time were included in this study. Swallowing function was assessed using the Food Intake LEVEL Scale. Nine specific variables were used to create a model for determining the need for enteral nutrition. Initially, variable selection was conducted through correlation analysis. Subsequently, the data were randomly divided into training and test groups. Five machine learning methods were applied to identify the most effective algorithm: logistic regression, decision tree, random forest, support vector machine, and XG Boost.

Results Through correlation analysis, we identified the independent variables Functional Independence Measure, motor and cognitive scores and speech intelligibility. The logistic regression model demonstrated high performance (accuracy, 0.82; area under the curve, 0.82).

Conclusion We demonstrated that a predictive model, employing machine learning and integrating Functional Independence Measure motor and cognitive scores and speech intelligibility, exhibits superior predictive efficacy and ascertains the necessity for enteral nutrition. This model can be expediently appraised even by individuals not specialized in dysphagia. Additionally, it is applicable to patients who are incapable of adhering to conventional swallowing assessment protocols owing to compromised consciousness or cognitive impairments, or those with an exceptionally elevated risk of aspiration.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Ethical approval was obtained from the Clinical Research Ethics Committee of Kanazawa medical university hospital (approval number: 78), ensuring adherence to the Declaration of Helsinki.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted March 15, 2024.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Machine Learning in Acute Stroke Care: A Novel Model for Assessing the Need for Enteral Nutrition
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Machine Learning in Acute Stroke Care: A Novel Model for Assessing the Need for Enteral Nutrition
Kazuhiro Okamoto, Keisuke Irie, Kengo Hoyano, Isao Matsushita
medRxiv 2024.03.11.24304069; doi: https://doi.org/10.1101/2024.03.11.24304069
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Machine Learning in Acute Stroke Care: A Novel Model for Assessing the Need for Enteral Nutrition
Kazuhiro Okamoto, Keisuke Irie, Kengo Hoyano, Isao Matsushita
medRxiv 2024.03.11.24304069; doi: https://doi.org/10.1101/2024.03.11.24304069

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Rehabilitation Medicine and Physical Therapy
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)