Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

A Novel Sentence Transformer-based Natural Language Processing Approach for Schema Mapping of Electronic Health Records to the OMOP Common Data Model

View ORCID ProfileXinyu Zhou, View ORCID ProfileLovedeep Singh Dhingra, View ORCID ProfileArya Aminorroaya, Philip Adejumo, View ORCID ProfileRohan Khera
doi: https://doi.org/10.1101/2024.03.21.24304616
Xinyu Zhou
1Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
BS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xinyu Zhou
Lovedeep Singh Dhingra
2Yale School of Medicine, New Haven, CT, USA
MBBS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Lovedeep Singh Dhingra
Arya Aminorroaya
2Yale School of Medicine, New Haven, CT, USA
MD, MPH
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Arya Aminorroaya
Philip Adejumo
2Yale School of Medicine, New Haven, CT, USA
BS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rohan Khera
1Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
2Yale School of Medicine, New Haven, CT, USA
3Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
4Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
MD, MS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Rohan Khera
  • For correspondence: rohan.khera{at}yale.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Mapping electronic health records (EHR) data to common data models (CDMs) enables the standardization of clinical records, enhancing interoperability and enabling large-scale, multi-centered clinical investigations. Using 2 large publicly available datasets, we developed transformer-based natural language processing models to map medication-related concepts from the EHR at a large and diverse healthcare system to standard concepts in OMOP CDM. We validated the model outputs against standard concepts manually mapped by clinicians. Our best model reached out-of-box accuracies of 96.5% in mapping the 200 most common drugs and 83.0% in mapping 200 random drugs in the EHR. For these tasks, this model outperformed a state-of-the-art large language model (SFR-Embedding-Mistral, 89.5% and 66.5% in accuracy for the two tasks), a widely-used software for schema mapping (Usagi, 90.0% and 70.0% in accuracy), and direct string match (7.5% and 7.5% accuracy). Transformer-based deep learning models outperform existing approaches in the standardized mapping of EHR elements and can facilitate an end-to-end automated EHR transformation pipeline.

Competing Interest Statement

Dr. Khera is an Associate Editor of JAMA. He also receives research support, through Yale, from Bristol-Myers Squibb, Novo Nordisk, and BridgeBio. He is a coinventor of U.S. Pending Patent Applications 63/562,335, 63/177,117, 63/428,569, 63/346,610, 63/484,426, 63/508,315, and 63/606,203. He is a co-founder of Ensight-AI, Inc. and Evidence2Health, health platforms to improve cardiovascular diagnosis and evidence-based cardiovascular care.

Funding Statement

Dr. Khera was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health (under awards R01HL167858 and K23HL153775) and the Doris Duke Charitable Foundation (under award 2022060).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The Yale institutional review board reviewed the study, approved the study protocol, and waived the need for informed consent, as the study represents a secondary analysis of existing data.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

The model was evaluated on protected health information, which cannot be shared publicly to protect patient confidentiality. The OMOP dictionaries used to train the model are available at: https://athena.ohdsi.org/vocabulary/list

https://athena.ohdsi.org/vocabulary/list

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted March 24, 2024.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A Novel Sentence Transformer-based Natural Language Processing Approach for Schema Mapping of Electronic Health Records to the OMOP Common Data Model
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A Novel Sentence Transformer-based Natural Language Processing Approach for Schema Mapping of Electronic Health Records to the OMOP Common Data Model
Xinyu Zhou, Lovedeep Singh Dhingra, Arya Aminorroaya, Philip Adejumo, Rohan Khera
medRxiv 2024.03.21.24304616; doi: https://doi.org/10.1101/2024.03.21.24304616
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A Novel Sentence Transformer-based Natural Language Processing Approach for Schema Mapping of Electronic Health Records to the OMOP Common Data Model
Xinyu Zhou, Lovedeep Singh Dhingra, Arya Aminorroaya, Philip Adejumo, Rohan Khera
medRxiv 2024.03.21.24304616; doi: https://doi.org/10.1101/2024.03.21.24304616

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)