Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

EMBRACE: Explainable Multitask Burnout Prediction for Resident Physicians using Adaptive Deep Learning

View ORCID ProfileSaima Alam, View ORCID ProfileMohammad Arif Ul Alam
doi: https://doi.org/10.1101/2023.06.24.23291864
Saima Alam
1Berkshire Medical Center, University of Massachusetts Chan Medical School
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Saima Alam
Mohammad Arif Ul Alam
2University of Massachusetts Lowell, University of Massachusetts Chan Medical School
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mohammad Arif Ul Alam
  • For correspondence: mohammadariful_alam{at}uml.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Medical residency is associated with long working hours, demanding schedules, and high stress levels, which can lead to burnout among resident physicians. Although wearable and machine learning-based interventions can be useful in predicting potential burnout, existing models fail to clinically explain their predictions, thereby undermining the trustworthiness of the research findings and rendering the intervention apparently useless to residents. This paper develops, EMBRACE, Explainable Multitask Burnout pRediction using AdaptivE deep learning, that employs a novel framework for predicting burnout that is clinically explainable. At first, we develop, a wearable sensor based improved workplace activity and stress detection algorithm, using deep multi-task learning. Next, we present a novel Adaptive Multi-Task Learning (MTL) framework built on top of our activity and stress detection algorithm, to automatically detect burnout. Additionally, this model also completes the resident burnout survey automatically such a way that it can clinically estimate the same burnout level i.e., clinically explainable and trustworthy estimation. We evaluated the efficacy and explainability of EMBRACE using a real-time data collected from 28 resident physicians (2-7 days each) with appropriate IRB approval (IRB# 2021-017).

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The data collected for this study has bee IRB approved by Berkshire Medical Center with the approval number IRB# 2021-017

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Footnotes

  • salam{at}bhs1.edu

  • mohammadariful_alam{at}uml.edu

Data Availability

All data produced in the present study are available with appropriate deidentification upon reasonable request to the authors

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted June 29, 2023.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
EMBRACE: Explainable Multitask Burnout Prediction for Resident Physicians using Adaptive Deep Learning
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
EMBRACE: Explainable Multitask Burnout Prediction for Resident Physicians using Adaptive Deep Learning
Saima Alam, Mohammad Arif Ul Alam
medRxiv 2023.06.24.23291864; doi: https://doi.org/10.1101/2023.06.24.23291864
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
EMBRACE: Explainable Multitask Burnout Prediction for Resident Physicians using Adaptive Deep Learning
Saima Alam, Mohammad Arif Ul Alam
medRxiv 2023.06.24.23291864; doi: https://doi.org/10.1101/2023.06.24.23291864

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)