EMBRACE: Explainable Multitask Burnout Prediction for Resident Physicians using Adaptive Deep Learning
View ORCID ProfileSaima Alam, View ORCID ProfileMohammad Arif Ul Alam
doi: https://doi.org/10.1101/2023.06.24.23291864
Saima Alam
1Berkshire Medical Center, University of Massachusetts Chan Medical School
Mohammad Arif Ul Alam
2University of Massachusetts Lowell, University of Massachusetts Chan Medical School

Data Availability
All data produced in the present study are available with appropriate deidentification upon reasonable request to the authors
Posted June 29, 2023.
EMBRACE: Explainable Multitask Burnout Prediction for Resident Physicians using Adaptive Deep Learning
Saima Alam, Mohammad Arif Ul Alam
medRxiv 2023.06.24.23291864; doi: https://doi.org/10.1101/2023.06.24.23291864
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)