Patient-derived PixelPrint phantoms for evaluating clinical imaging performance of a deep learning CT reconstruction algorithm
View ORCID ProfileJessica Y. Im, View ORCID ProfileSandra S. Halliburton, View ORCID ProfileKai Mei, Amy E. Perkins, Eddy Wong, Leonid Roshkovan, View ORCID ProfileOlivia F. Sandvold, View ORCID ProfileLeening P. Liu, View ORCID ProfileGrace J. Gang, View ORCID ProfilePeter B. Noël
doi: https://doi.org/10.1101/2023.12.07.23299625
Jessica Y. Im
1Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
2Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
Sandra S. Halliburton
3Philips Healthcare, Orange Village, OH, USA
Kai Mei
1Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
Amy E. Perkins
3Philips Healthcare, Orange Village, OH, USA
Eddy Wong
3Philips Healthcare, Orange Village, OH, USA
Leonid Roshkovan
1Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
Olivia F. Sandvold
1Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
2Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
Leening P. Liu
1Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
2Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
Grace J. Gang
1Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
Peter B. Noël
1Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA

Data Availability
All data produced in the present study are available upon reasonable request to the authors.
Posted December 09, 2023.
Patient-derived PixelPrint phantoms for evaluating clinical imaging performance of a deep learning CT reconstruction algorithm
Jessica Y. Im, Sandra S. Halliburton, Kai Mei, Amy E. Perkins, Eddy Wong, Leonid Roshkovan, Olivia F. Sandvold, Leening P. Liu, Grace J. Gang, Peter B. Noël
medRxiv 2023.12.07.23299625; doi: https://doi.org/10.1101/2023.12.07.23299625
Patient-derived PixelPrint phantoms for evaluating clinical imaging performance of a deep learning CT reconstruction algorithm
Jessica Y. Im, Sandra S. Halliburton, Kai Mei, Amy E. Perkins, Eddy Wong, Leonid Roshkovan, Olivia F. Sandvold, Leening P. Liu, Grace J. Gang, Peter B. Noël
medRxiv 2023.12.07.23299625; doi: https://doi.org/10.1101/2023.12.07.23299625
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)