Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Causal Estimands for Infectious Disease Count Outcomes to Investigate the Public Health Impact of Interventions

View ORCID ProfileKatherine M Jia, View ORCID ProfileChristopher B Boyer, View ORCID ProfileJacco Wallinga, View ORCID ProfileMarc Lipsitch
doi: https://doi.org/10.1101/2024.07.24.24310946
Katherine M Jia
1Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Katherine M Jia
  • For correspondence: kjia{at}g.harvard.edu
Christopher B Boyer
1Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christopher B Boyer
Jacco Wallinga
2Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
3Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jacco Wallinga
Marc Lipsitch
1Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
4Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marc Lipsitch
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Causal estimands of infectious disease interventions—direct, indirect, overall, and total effects— are conventionally defined as differences in individual risk under hypothetical treatment conditions. During the coronavirus disease (COVID-19) pandemic, researchers implicitly targeted analogous estimands at the population level by comparing count outcomes (e.g., vaccine-averted deaths) to quantify public health impact of non-pharmaceutical interventions or vaccination campaigns. However, these population-level analogs of conventional estimands have not been rigorously defined. Using potential outcome notation, we introduce a population-level analog of the overall effect and partitioned it into components involving individual-level direct and indirect effects. We further identify conditions under which a population-level analog of direct effect (frequently estimated with empirical data in cases-averted or avertible analyses), can be a useful lower bound of overall effect (arguably the most relevant effect for policy-making and retrospective policy evaluation) at the population level. To illustrate, we describe a susceptible-infected-recovered-death model stratified by vaccination status. When transmission and fatality parameters do not vary and vaccine efficacies do not wane over time, cases averted via direct effect among vaccinated individuals (or cases avertible via direct effect among unvaccinated individuals) is shown to be a lower bound of population-level overall effect—that is, vaccine-averted (or avertible) cases. However, when vaccine efficacies wane, this relation may not hold for avertible cases; when transmission or fatality parameters increase over time, it may not hold for either analysis. By classifying population-level estimands and establishing their relations, this study improves conduct and interpretation of research evaluating impact of infectious disease interventions.

Competing Interest Statement

C.B. reports consulting income from Janssen Pharmaceuticals. M.L. serves as Senior Advisor to the US CDC's Center for Forecasting and Outbreak Analytics. This paper is written in his academic capacity and may not represent the views of the CDC or any government agency.

Funding Statement

J.W. was supported by the European Union's Horizon research and innovation program—project ESCAPE (Grant number: 101095619). C.B. and M.L. were supported by the SeroNet program of the National Cancer Institute (Grant number: 1U01CA261277).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

This is a simulation study with code available at https://github.com/katjia/population_level_effects.

https://github.com/katjia/population_level_effects

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted July 26, 2024.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Causal Estimands for Infectious Disease Count Outcomes to Investigate the Public Health Impact of Interventions
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Causal Estimands for Infectious Disease Count Outcomes to Investigate the Public Health Impact of Interventions
Katherine M Jia, Christopher B Boyer, Jacco Wallinga, Marc Lipsitch
medRxiv 2024.07.24.24310946; doi: https://doi.org/10.1101/2024.07.24.24310946
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Causal Estimands for Infectious Disease Count Outcomes to Investigate the Public Health Impact of Interventions
Katherine M Jia, Christopher B Boyer, Jacco Wallinga, Marc Lipsitch
medRxiv 2024.07.24.24310946; doi: https://doi.org/10.1101/2024.07.24.24310946

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)