Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Predicting mortality in critically ill patients with hypertension using machine learning and deep learning models

Ziyang Zhang, View ORCID ProfileJiancheng Ye
doi: https://doi.org/10.1101/2024.08.21.24312399
Ziyang Zhang
1Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
MS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jiancheng Ye
2Weill Cornell Medicine, Cornell University, New York, NY, USA
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jiancheng Ye
  • For correspondence: jiy4009{at}med.cornell.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Background Accurate prediction of mortality in critically ill patients with hypertension admitted to the Intensive Care Unit (ICU) is essential for guiding clinical decision-making and improving patient outcomes. Traditional prognostic tools often fall short in capturing the complex interactions between clinical variables in this high-risk population. Recent advances in machine learning (ML) and deep learning (DL) offer the potential for developing more sophisticated and accurate predictive models.

Objective This study aims to evaluate the performance of various ML and DL models in predicting mortality among critically ill patients with hypertension, with a particular focus on identifying key clinical predictors and assessing the comparative effectiveness of these models.

Methods We conducted a retrospective analysis of 30,096 critically ill patients with hypertension admitted to the ICU. Various ML models, including logistic regression, decision trees, and support vector machines, were compared with advanced DL models, including 1D convolutional neural networks (CNNs) and long short-term memory (LSTM) networks. Model performance was evaluated using area under the receiver operating characteristic curve (AUC) and other performance metrics. SHapley Additive exPlanations (SHAP) values were used to interpret model outputs and identify key predictors of mortality.

Results The 1D CNN model with an initial selection of predictors achieved the highest AUC (0.7744), outperforming both traditional ML models and other DL models. Key clinical predictors of mortality identified across models included the APS-III score, age, and length of ICU stay. The SHAP analysis revealed that these predictors had a substantial influence on model predictions, underscoring their importance in assessing mortality risk in this patient population.

Conclusion Deep learning models, particularly the 1D CNN, demonstrated superior predictive accuracy compared to traditional ML models in predicting mortality among critically ill patients with hypertension. The integration of these models into clinical workflows could enhance the early identification of high-risk patients, enabling more targeted interventions and improving patient outcomes. Future research should focus on the prospective validation of these models and the ethical considerations associated with their implementation in clinical practice.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

None.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

All data produced are available online at: https://mimic.physionet.org/.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted August 22, 2024.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Predicting mortality in critically ill patients with hypertension using machine learning and deep learning models
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Predicting mortality in critically ill patients with hypertension using machine learning and deep learning models
Ziyang Zhang, Jiancheng Ye
medRxiv 2024.08.21.24312399; doi: https://doi.org/10.1101/2024.08.21.24312399
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Predicting mortality in critically ill patients with hypertension using machine learning and deep learning models
Ziyang Zhang, Jiancheng Ye
medRxiv 2024.08.21.24312399; doi: https://doi.org/10.1101/2024.08.21.24312399

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)