ABSTRACT
Background Accurate prediction of mortality in critically ill patients with hypertension admitted to the Intensive Care Unit (ICU) is essential for guiding clinical decision-making and improving patient outcomes. Traditional prognostic tools often fall short in capturing the complex interactions between clinical variables in this high-risk population. Recent advances in machine learning (ML) and deep learning (DL) offer the potential for developing more sophisticated and accurate predictive models.
Objective This study aims to evaluate the performance of various ML and DL models in predicting mortality among critically ill patients with hypertension, with a particular focus on identifying key clinical predictors and assessing the comparative effectiveness of these models.
Methods We conducted a retrospective analysis of 30,096 critically ill patients with hypertension admitted to the ICU. Various ML models, including logistic regression, decision trees, and support vector machines, were compared with advanced DL models, including 1D convolutional neural networks (CNNs) and long short-term memory (LSTM) networks. Model performance was evaluated using area under the receiver operating characteristic curve (AUC) and other performance metrics. SHapley Additive exPlanations (SHAP) values were used to interpret model outputs and identify key predictors of mortality.
Results The 1D CNN model with an initial selection of predictors achieved the highest AUC (0.7744), outperforming both traditional ML models and other DL models. Key clinical predictors of mortality identified across models included the APS-III score, age, and length of ICU stay. The SHAP analysis revealed that these predictors had a substantial influence on model predictions, underscoring their importance in assessing mortality risk in this patient population.
Conclusion Deep learning models, particularly the 1D CNN, demonstrated superior predictive accuracy compared to traditional ML models in predicting mortality among critically ill patients with hypertension. The integration of these models into clinical workflows could enhance the early identification of high-risk patients, enabling more targeted interventions and improving patient outcomes. Future research should focus on the prospective validation of these models and the ethical considerations associated with their implementation in clinical practice.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
None.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced are available online at: https://mimic.physionet.org/.