Predicting mortality in critically ill patients with hypertension using machine learning and deep learning models
Ziyang Zhang, View ORCID ProfileJiancheng Ye
doi: https://doi.org/10.1101/2024.08.21.24312399
Ziyang Zhang
1Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
MSJiancheng Ye
2Weill Cornell Medicine, Cornell University, New York, NY, USA
PhD
Article usage
Posted August 22, 2024.
Predicting mortality in critically ill patients with hypertension using machine learning and deep learning models
Ziyang Zhang, Jiancheng Ye
medRxiv 2024.08.21.24312399; doi: https://doi.org/10.1101/2024.08.21.24312399
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)